- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Armstrong, Ryan_T (2)
-
Mostaghimi, Peyman (2)
-
Berg, Steffen (1)
-
Chen, Cheng (1)
-
Da_Wang, Ying (1)
-
Ebadi, Mohammad (1)
-
McClure, James (1)
-
McClure, James_E (1)
-
Wang, Tingting (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study aims to bridge length scales in immiscible multiphase flow simulation by connecting two published governing equations at the pore-scale and continuum-scale through a novel validation framework. We employ Niessner and Hassnaizadeh's [“A model for two-phase flow in porous media including fluid-fluid interfacial area,” Water Resour. Res. 44(8), W08439 (2008)] continuum-scale model for multiphase flow in porous media, combined with the geometric equation of state of McClure et al. [“Modeling geometric state for fluids in porous media: Evolution of the Euler characteristic,” Transp. Porous Med. 133(2), 229–250 (2020)]. Pore-scale fluid configurations simulated with the lattice-Boltzmann method are used to validate the continuum-scale results. We propose a mapping from the continuum-scale to pore-scale utilizing a generalized additive model to predict non-wetting phase Euler characteristics during imbibition, effectively bridging the continuum-to-pore length scale gap. Continuum-scale simulated measures of specific interfacial area, saturation, and capillary pressure are directly compared to up-scaled pore-scale simulation results. This research develops a numerical framework capable of capturing multiscale flow equations establishing a connection between pore-scale and continuum-scale simulations.more » « less
-
Wang, Tingting; McClure, James_E; Da_Wang, Ying; Berg, Steffen; Chen, Cheng; Mostaghimi, Peyman; Armstrong, Ryan_T (, Water Resources Research)Abstract Various researchers have studied fluctuations in pore‐scale phase occupancy during multiphase flow in porous media using synchrotron‐based X‐ray microcomputed tomography (micro‐CT). However, the impact of these fluctuations on the concept of a representative volume is not yet fully understood. In this study, we performed spatial and temporal averaging of multiphase flow experiments visualized with synchrotron‐based micro‐CT, focusing on oil saturation as the key parameter to determine a representative time‐and‐space average. Our findings revealed that a saturation value representative of both time and space was achieved during fractional flow experiments in drainage mode with fractional flows of 0.8, 0.5, and 0.3. Furthermore, we computed a range of relative permeabilities on the basis of whether momentaneous saturation or time‐and‐space averaged saturation was utilized for direct simulation. Our results highlighted the importance of time‐and‐space averaging in determining a representative relative permeability and indicated that the temporal and spatial scales covered in a typical micro‐CT flow experiment were sufficient to obtain a representative saturation value for sandstone rock under intermittent flow conditions.more » « less
An official website of the United States government
